Protein fragment complementation strategies for biochemical network mapping.
نویسنده
چکیده
The organization of biochemical networks that make up the living cell can be defined by studying the dynamics of protein-protein interactions. To this end, experimental strategies based on protein fragment complementation assays (PCAs) have been used to map biochemical networks and to identify novel components of these networks. Pharmacological perturbations of the interactions can be observed, and the resulting pharmacological profiles and subcellular locations of interactions allow each gene product to be 'placed' at its relevant point in a network. Network mapping by PCA could be used with, or instead of, traditional target-based drug discovery strategies to increase the quantity and quality of information about the actions of small molecules on living cells and the intricate networks that make up their chemical machinery.
منابع مشابه
Construction of protein fragment complementation libraries using incremental truncation.
Many proteins can have their peptide backbone cut by proteolytic or genetic means, yet the two fragments can associate to make an active heterodimer. This ‘‘monomer-to-heterodimer conversion’’ is referred to as protein fragment complementation (PFC). Such complementation is the reverse of evolutionary processes in which domains are recruited and fused at the genetic level. Classic examples of p...
متن کاملMapping of TP53 protein network using cytoscape software
TP53 acts as a tumor suppressor in cancer. It induces cell cycle arrest or apoptosis in response to cellular stress and damage. p53 gene alteration could cause uncontrolled cell proliferation.In the present study, we used TP53 gene as the seed in the construction of a protein-protein functional association network to identify genes that might involve in tumorgenesis process with TP53. TP53 prot...
متن کاملProtein fragment complementation in M.HhaI DNA methyltransferase.
The 5mC DNA methyltransferase M.HhaI can be split into two individually inactive N- and C-terminal fragments that together can form an active enzyme in vivo capable of efficiently methylating DNA. This active fragment pair was identified by creating libraries of M.HhaI gene fragment pairs and then selecting for the pairs that code for an active 5mC methyltransferase. The site of bisection for s...
متن کاملFluorescent and bioluminescent protein-fragment complementation assays in the study of G protein-coupled receptor oligomerization and signaling.
Most cellular functions, including signaling by G protein-coupled receptors (GPCRs), are mediated by protein-protein interactions, making the identification and localization of protein complexes key to the understanding of cellular processes. In complement to traditional biochemical techniques, noninvasive resonance energy transfer (RET) and protein-fragment complementation assays (PCAs) now al...
متن کاملDual-color click beetle luciferase heteroprotein fragment complementation assays.
Understanding the functional complexity of protein interactions requires mapping biomolecular complexes within the cellular environment over biologically relevant time scales. Herein, we describe a set of reversible multicolored heteroprotein complementation fragments based on various firefly and click beetle luciferases that utilize the same substrate, D-luciferin. Luciferase heteroprotein fra...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Current opinion in biotechnology
دوره 14 6 شماره
صفحات -
تاریخ انتشار 2003